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Introduction 

Paraffins such as those found in Opticool Fluid may be used as heat transfer mediums in 
electrical cooling and thermal systems, in liquid phase cooling of electronic components, in 
thermal energy storage and a host of similar applications 1,2,. Although air and water have long 
been employed as cost-effective heat transfer agents, paraffins have the advantage of being good 
electrical insulators which is important in applications where removal of heat by convection – 
that is to have the fluid directly in contact with heated electronic components – is desired. 
Paraffins have better thermal insulating capability than air-cooled systems. Their other notable 
properties that make paraffins useful for cooling applications include thermal and chemical 
stability, non-toxicity, biodegradability, and low cost.  

One particular property found within paraffins involves a low coefficient of thermal 
expansion. Coefficient of thermal expansion is defined as the change in volume of a material per 
one degree Celsius change in temperature. This is an intensive property and is unique for each 
substance. 

For applications requiring fluid to be contained in pipes or containers, this property is 
important to consider in choosing the fluid suited for each application. As the fluid is exposed to 
varying temperatures, its volume also changes and the container or pipes should be designed to 
accommodate this volume changes to ensure proper functioning. This helps to avoid build-up of 
hydraulic pressure and spills during equipment servicing as well. Because the coefficient of 
thermal expansion for paraffins are much lower than that of air, their use as coolants offer many 
advantages to modern systems designers in the unending pursuit of technological 
miniaturization.  

The coefficient of thermal expansion of a particular substance is precisely determined via 
experimental methods such as dilatometric and pycnometric procedures. The first method 
measures the changes in volume of the object using a length sensitive device and requires that 
the objects are highly elastic, mostly solids or solid-like material such as pastes. The second 
method relies on the fact that changes in volume can be indirectly obtained from the densities of 
materials as temperatures change 3. Both methodologies are extremely laborious to perform 3, 
however, if the fluid is well-researched and their densities are known for a certain temperature of 
interest, the coefficient of thermal expansion of the fluid can be estimated. Thus, volume changes 
can be calculated as well in the following manner.  
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To obtain the equation for the Coefficient of Thermal Expansion, we begin with the Ideal Gas 
Law: 

Equation Description 
𝑃𝑉 = 𝑛𝑅𝑇     Starting Equation 
𝑉 = !"#

!
  Solving for the Value of V 

𝑑𝑉 =
𝜕𝑉
𝜕𝑇

𝑑𝑇 +   
𝜕𝑉
𝜕𝑃

𝑑𝑃 +   
𝜕𝑉
𝜕𝑛

𝑑𝑛 
Obtaining the derivative of V: n, P, T are for 
partial derivatives. 
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!
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Dividing by V; this is to obtain the change in V 
with respect to itself. 

 
From the above equation, we have the Volumetric Coefficient of Thermal expansion,  𝜷, as: 
𝜷 = 𝟏

𝑽
(𝝏𝑽
𝝏𝑻
). This is the coefficient of Thermal expansion, changing with Temperature. 

For a finite change of Temperature, we can get the approximate value of the Thermal expansion 
coefficient as: 
 

Equation Description 

𝜷 =
1
𝑉
(
𝜕𝑉
𝜕𝑇
) 

Starting Equation 

𝜷 ≈
1
𝑉
(
∆𝑉
∆𝑇
) Partial Derivative changed to delta for finite 

change of temperature. 

𝜷 ≈
1
𝑉
(
(𝑉2 − 𝑉1)
(𝑇2 − 𝑇1)

) Change 𝛥𝑉 = 𝑉2 − 𝑉1 and 𝛥𝑇 = 𝑇2 − 𝑇1 

𝜷 ≈
1
𝑚 𝜌

(
(𝑚 𝜌2 −

𝑚
𝜌1)

(𝑇2 − 𝑇1)
) 

Note that 𝜌 = 𝑚
𝑉 so it follows that: 

𝑉 = 𝑚 𝜌 .. And then we substitute the value. 

𝜷 ≈
𝜌
𝑚
(𝑚

(1 𝜌2 −
1
𝜌1)

(𝑇2 − 𝑇1)
) 

Simplifying the equation (for the 1/V) and 
factoring out m for (V2-V1) 

𝜷 ≈ 𝜌(
(1 𝜌2 −

1
𝜌1)

(𝑇2 − 𝑇1)
) 

Cancelling out m. 

𝜷 ≈ 𝜌(
(𝜌1 − 𝜌2𝜌1𝜌2 )

(𝑇2 − 𝑇1)
) 

Simplifying 

𝜷 ≈ (
𝜌

𝜌1𝜌2
)(
(𝜌1 − 𝜌2)
(𝑇2 − 𝑇1)

) 
Simplifying 

𝜷 ≈ (
1
𝜌2
)(
(𝜌1 − 𝜌2)
(𝑇2 − 𝑇1)

) Since 𝜌 = 𝜌 1.  
[EQTN 1] 

𝜷 ≈ (
1
𝑆2
)(
(𝑆1 − 𝑆2)
(𝑇2 − 𝑇1)

) 
Using specific gravity to simplify the equation, 
and knowing that specific gravity is:   

𝑠 =
𝜌(𝑠𝑢𝑏𝑠𝑡𝑎𝑛𝑐𝑒)
𝜌(𝑤𝑎𝑡𝑒𝑟)

 

[EQTN2] 
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It should be noted here that for Fluids, 𝜷 or Coefficient of Volumetric Thermal expansion is 
used; while for Solids 𝜶 or Coefficient of Linear Thermal expansion is commonly used. With 
that, we will have the following formula for the fluid as: 
 

Equation Description 
∆𝑉 = 𝑉!𝛽∆𝑇 ∆𝑉 -> Delta V, difference between 𝑉! and 𝑉! 

𝑉!   -> Final Volume 
𝑉!   -> Initial Volume 
∆𝑇 -> Delta T, difference between 𝑇! and 𝑇! 
𝑇!  -> Final Temperature 
𝑇!   -> Initial Temperature 
[EQTN3] 

𝑉! − 𝑉! = 𝑉!𝛽(𝑇! − 𝑇!) Expanding ∆𝑉 and ∆𝑇 
𝑉! = 𝑉! +   𝑉!𝛽(𝑇! − 𝑇!) Calculating for the Value of 𝑉! 
𝑉! = 𝑉![1 +   𝛽 𝑇! − 𝑇! ] Simplifying 

[EQTN4] 
 
And for a solid as: 
 

Equation Description 
∆𝐿 = 𝐿!𝛼∆𝑇 ∆𝐿 -> Delta L, difference between 𝐿! and 𝐿! 

𝐿!   -> Final Length 
𝐿!   -> Initial Length 
∆𝑇 -> Delta T, difference between 𝑇! and 𝑇! 
𝑇!  -> Final Temperature 
𝑇!   -> Initial Temperature 
[EQTN5] 

𝐿! − 𝐿! = 𝐿!𝛼(𝑇! − 𝑇!) Expanding ∆𝐿 and ∆𝑇 
𝐿! = 𝐿! +   𝐿!𝛼(𝑇! − 𝑇!) Calculating for the Value of 𝐿! 
𝐿! = 𝐿![1 +   𝛼 𝑇! − 𝑇! ] Simplifying 

[EQTN6] 
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For an application that uses a Solid as a container for the Fluid, we will be dealing with Volume 
of the Solid. Thus, obtaining the relationship of 𝜶 and 𝜷 as applied to solid will be useful, and 
the approximate relationship will be as follows: 
 

Equation Description 
𝑉 = (𝐿  )! We will start with a cube, but this will apply to all 

isotropic materials, which is true for most metals. 
[EQTN7] 

𝑉 + ∆𝑉 = (𝐿 + ∆𝐿  )! This will be the Volume and Length Relationship as 
Temperature changes, with: 
 
∆𝐿 -> Delta L, difference between 𝐿! and 𝐿! 
𝐿!   -> Final Length 
𝐿!   -> Initial Length 
∆𝑇 -> Delta T, difference between 𝑇! and 𝑇! 
𝑇!  -> Final Temperature 
𝑇!   -> Initial Temperature 

𝑉 + ∆𝑉 = 
𝐿! + 3𝐿!∆𝐿 +   3𝐿(∆𝐿)  ! + (∆𝐿)  ! 

After expanding the right side of the equation. 

𝑉 + ∆𝑉 ≈   𝐿! + 3𝐿!∆𝐿 
 

Here we will note that this is the approximation since ∆𝐿 
has a component 𝛼 which is less than 1. Thus the square 
and the cube will approach 0 as 𝛼 approaches 0 (ie  ∆𝐿  !-
> 0 as 𝛼 -> 0, where X is the power and X>1). 

𝑉 + ∆𝑉 ≈   𝑉 + 3𝑉
∆𝐿
𝐿

 

 

Substituting 𝑉 =   𝐿! [EQTN7] to the equation, and also 
𝐿! =    !

!
 

𝑉 + ∆𝑉 ≈   𝑉 + 3𝑉𝛼∆𝑇 
 

Substituting [EQTN5] to the right side of the equation. 

∆𝑉 ≈   3𝑉𝛼∆𝑇 
 

Cancelling out V in both sides of the equations 

𝑉𝛽∆𝑇   ≈ 3𝑉𝛼∆𝑇 Substituting [EQTN3] to the left side of the equation 
𝜷   ≈ 𝟑𝜶 This equation is a good approximation for isotropic 

materials. 
[EQTN8] 

 
With the relevant equations outlined, we can now 
apply these to a practical application. We will 
start by calculating the required size of a 
container needed to accommodate a volume of a 
particular liquid (Paraffin) over a known 
temperature range. We will use the graph shown 
here to indicate the temperature range of 
operation (given that the density at said points are 
known): 
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Equation Description 
𝑉!! = 𝑉!![1 +   𝛽 𝑇! − 𝑇! ] Starting Equation. [EQTN4] 

 
Here we will calculate the Volume of the fluid 
when the temperature,𝑇!, goes up (𝑇! >   𝑇!) 
where the density, 𝜌2, is known. 
 
We place additional notation F in the Volume 
variable 𝑉!! , to indicate that this is for the Fluid. 

𝑉!! =   𝑉!! = 𝑉!![1 +   𝛽 𝑇! − 𝑇! ] For this application, to get the required container 
size, it should accommodate the expanded 
Volume of the Fluid 𝑉!!. To do that, we should 
have: 
𝑉!! =   𝑉!! 
This explains the equation on the left. 

𝑉!! = 𝑉!![1 +   (
1
𝜌2
)(
(𝜌1 − 𝜌2)
(𝑇2 − 𝑇1)

) 𝑇! − 𝑇! ] 
Substituting value of 𝛽 using [EQTN1] and 
simplifying the equation. 
 
NOTE:  

-­‐ We are using 𝛽 since we are dealing with 
Fluid 

-­‐ We used [EQTN1] since datasheets 
usually gives the 𝜌 of the fluid at t given 
Temperature T. 

𝑉!! = 𝑉!![1 +   (
(𝜌1 − 𝜌2)

𝜌2
)] 

Simplifying 
 

𝑉!! = 𝑉!![
𝜌1
𝜌2
] Further simplification. 

 
This means that the Container Volume will be a 
function of the Fluid’s Initial and Final Volume 
(with reference to the temperature graph above) 
over the temperature range which it will be 
subjected. 
[EQTN9] 
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For further analysis, we will calculate the Void space (volume) of the Container when the liquid 
completely cools down. This is the state #3 in the above graph. It should be noted that the 
locations of the said temperature points are arbitrary as long as density at that point is known.  
For this analysis, we assume that T1 = T3 (that applies to the full temperature range of the Fluid). 
 

Equation Description 
𝑉!"#$ =   𝑉!! − 𝑉!! 
𝑉!"#$ =   𝑉!! − 𝑉!! 

Initial Equation. 
Here we know that the Volume (void) is just the 
difference of the Container Volume (cooled 
down) and Fluid Volume (cooled down) 
 
Because we know that T1 = T3 then: 𝑉!! =   𝑉!! . 

𝑉!"#$ =    {𝑉!![1 +   𝛽! 𝑇! − 𝑇! ]} − 𝑉!! Substituting [EQTN4] for the Volume of the 
Container. We will note that here we used the 
Volumetric Coefficient of Thermal expansion 
𝛽! , thus the subscript C. 

𝑉!"#$ = {𝑉!![
𝜌1
𝜌2
][1 +   3𝛼 𝑇! − 𝑇! ]} − 𝑉!! Substituting the Value of 𝑉!! from [EQTN9]. 

 
Using [EQTN8] so that Linear Coefficient of 
thermal expansion, which is usually known for 
solid, can be used. 
 
Substituting T1 to T3 since T3=T1 here. 

𝑉!"#$ = 𝑉!!{[
𝜌1
𝜌2
][1 +   3𝛼 𝑇! − 𝑇! ] − 1} 

After simplification. 
 
This gives the generic equation to get the 
Volume Void when the Fluid Cools down. 
 
This will also give the user an idea of the 
maximum Volume that can fill the Container. 
 
[EQTN10] 
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Specific Example 
 
For the case of Paraffin (C16-C28), we have the Following: 
 

Required Container Size 
Equation Description 

𝑉!! = 𝑉!![
𝜌1
𝜌2
] Initial Equation using [EQTN9] 

𝑉!! = [
0.91
0.765

]𝑉!! 
Substituting the known values from Table 4 
PCM Document. 
𝜌1 = 0.910𝑘𝑔/𝑚3 
𝑇1 = 20  𝑑𝑒𝑔𝐶 
𝜌2 = 0.765𝑘𝑔/𝑚3 
𝑇2 = 70  𝑑𝑒𝑔𝐶 

𝑉!! = 1.1895𝑉!! After simplification. 
 
This means that above the stated temperature 
range, the Final Container Volume will be 
around 19% more with respect to the Fluid’s 
Initial Volume. 

 
Void Volume 

Equation Description 

𝑉!"#$ = 𝑉!!{[
𝜌1
𝜌2
][1 +   3𝛼 𝑇! − 𝑇! ] − 1} 

Starting Equation [EQTN10] 

𝑉!"#$ = 𝑉!!{[
0.91
0.765

][1
+   3(0.000013) 20 − 70 ]
− 1} 

Substituting the known values: 
𝜌1 = 0.910𝑘𝑔/𝑚3 
𝑇1 = 20  𝑑𝑒𝑔𝐶 or 293.15 degK 
𝜌2 = 0.765𝑘𝑔/𝑚3 
𝑇2 = 70  𝑑𝑒𝑔𝐶  𝑜𝑟  323.15  𝑑𝑒𝑔𝐾 
 
Here we will assume we have Steel as the 
Container’s material, thus: 

𝛼 = 0.000013
𝑚
𝑚
𝐾 

 
𝑉!"#$ = 0.1872𝑉!! Approximately 18.72% of the Initial Fluid 

Volume will be the Void upon Cool down. 
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Conclusion: 

Mineral oils are a mixture of hydrocarbons constituting saturated straight chain and cyclic 
hydrocarbons as well as aromatic hydrocarbons. Paraffins are purified portions of mineral oils 
and consist primarily of “paraffinic” or saturated straight chain hydrocarbons. Paraffins are also 
further classified to many fractions having specific flash/fire points, depending upon the number 
of carbons in the backbone of the constituent hydrocarbon for a certain fraction. In real-world 
cooling applications, densities of a specific paraffin fraction at a certain temperature should be 
accurately identified in order to accurately estimate the coefficient of thermal expansion and 
volume changes using the equations above. While some values may be obtained via textbooks 
and information found on the Internet, more reliable data may be obtained from suppliers or 
manufacturers for each fluid under evaluation. 

Opticool Fluid 

OptiCool Fluid is an isoparaffin-based dielectric 
heat transfer fluid manufactured by DSI 
Ventures, Inc. OptiCool has been used for over 
10-years to cool electrical circuitry in
transformers, RF and microwave transmission
devices and computer systems.

OptiCool Fluid is a colorless, odorless, food 
grade isoparaffin oil. With a very low viscosity 
and high thermal conductivity, OptiCool Fluid 
has extremely high heat transfer coefficients, 
making it ideal for removing heat from circuitry 
with high heat flux densities.  

Contact DSI to find out more about OptiCool 
Fluid and its electronics cooling applications. 

sales@dsiventures.com 
Tel: 903-526-7577  
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